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1 Introduction

Control Variate is a common technique used in Monte Carlo methods to reduce variance of the
estimators. These estimators are useful in optimization problems as well as in sampling problems.
A common problem faced in both the fields is that computation of gradients over the whole dataset
is usually expensive. One of the ways to tackle this is the use of noisy gradient estimators. In
optimization literature, the use of stochastic gradients is very well known. The use of noisy estimators
solves the problem of scalability but there is a trade off with the reliability on the output due to the
high variance of the noisy gradient estimators. Use of control variates can, therefore, be potentially
very helpful in reducing the variance in such cases [1].

Another field where the control variates are used is in the Monte Carlo estimators where the general
aim is to estimate expectations of some function of the random variables with respect to the posterior
distribution. In order to estimate the expectation of a function g(θ), the method involves generating
the samples θ using MCMC algorithms and then averaging the value of the images of the samples
which acts as an estimator of the expectation. Post-processing on the estimators are designed in order
to improve the quality of estimators independent of the type of MCMC algorithm used to get the
samples. Some of the well known post-processing methods include burn-in removal and thinning [2] .
Burn-in removal involves removal of first few samples from the chain in order to improve the bias of
the estimators. Thinning, on the other hand, involves retaining every kth sample and discarding the
rest in order to get samples that are not very correlated. We will discuss the use of control variates in
MCMC algorithms as a post-processing step in order to reduce the estimator variance in section 2.2.

In this report, we will mainly focus on reproducing and extending two papers: 1. Wang et. al. (2013)
[3] which discusses the theoretical aspects of control variates in optimization and empirically verifies
the benefits, in 3.1, 2. Baker et. al. (2019) [4] which discusses control variates in the context of
MCMC in section 2.2. Further, we will try to port their ideas to different settings such as MALA [5]
and explore whether these ideas can be adopted and improved in these settings.

2 Background Theory

2.1 Control Variates in SGD

Consider a general optimization setting with a finite set of training points {xn}Nn=1 with each
xn ∈ RD. We want to maximise w.r.t w ∈ RD the objective:

arg max
w

L(w) = arg max
w

[R(w) +
1

N

N∑
n=1

f(w,xn)]

whereR(w) is a regularization function. Unlike Gradient Based Methods, Stochastic Gradient (SG)
methods use a noisy gradient estimated from random data samples:

g(w,xn) = ∇wR(w) +∇wf(w,xn)

wt+1 = wt + ρtg(w,xn)



where n ∼ Unif(1, . . . , N) at step t. For ease in notation, we use gn(w) := g(w,xn). Note that to
ensure the convergence of the stochastic gradient algorithm [6][7], we require:

E
n

[gn(w)] = ∇wL(w)

However, if the variance of gn(w) is large, the algorithm can suffer from slow convergence. Intro-
ducing Control Variates aims to overcome this by constructing a new random vector which as the
same expectation as the target expectation but has smaller variance. In our experiments, we use a
random vector hn(w) ∈ RD to reduce the variance of the stochastic gradient estimate as:

g̃n(w) = gn(w)−AT (hn(w)− h(w))

where A is a D ×D matrix and E
n

[hn(w)] = h(w). Then clearly:

E
n

[g̃n(w)] = E
n

[gn(w)]− E
n

[
AT (hn(w)− h(w))

]
= E

n
[gn(w)]−ATE

n
[(hn(w)− h(w))]

= E
n

[gn(w)]−AT (E
n

[hn(w]− h(w))

= E
n

[gn(w)]

To reduce the variance of the noisy gradient, the trace of the covariance matrix of g̃n(w) must be
necessarily small, since:

Varn[g̃n(w))] := Covn[g̃n(w), gn(w)]

= Varn[gn(w)]− (Covn[hn(w), gn(w)] + Covn[gn(w), hn(w)])A+ATVarn[h̃n(w)]A

Setting A to be the minimizer of Tr(Varn[g̃n(w)]), i.e.:

A∗ = Tr(Varn[g̃n(w)])

= (Varn[hn(w))]−1
(
Covn[gn(w), hn(w)] + Covn[hn(w), gn(w)]

)
/2

which is a function of w.

Note that: In a first-order stochastic oracle model, we usually assume a constant σ such that for any
estimate w in its domain [8][9]:

E
n

[∥∥∥gn(w)− E
n

[gn(w)]
∥∥∥2
2

]
= Tr(Varn[gn(w))]) ≤ σ2

it can be shown that:

E
n

[∥∥∥g̃n(w)− E
n

[g̃n(w)]
∥∥∥2
2

]
≤ E

n

[∥∥∥gn(w)− E
n

[gn(w)]
∥∥∥2
2

]

i.e., it is possible to find a constant τ ≤ σ such that E
n

[∥∥∥g̃n(w)− E
n

[g̃n(w)]
∥∥∥2
2

]
≤ τ2 ∀w. Therefore,

we can improve the optimal convergence rate of SG methods from O(σ/
√
t) to O(τ/

√
t) for convex

problems; and from O(σ2/(µt)) to O(τ2/(µt)) for strongly convex problems [1].

Also note that: Estimating A can be computationally expensive due to the computation of
Varn[h̃n(w)]. One can therefore use a simpler surrogate to A, by reducing A to a single real
number a. In this case, the optimal a is then simply given by:

a∗ =
Tr(Covn[gn(w), hn(w)])

Tr(Varn(hn(w)))
(1)

which can be approximated by the sample covariance and variance from mini-batch samples while
running the stochastic gradient algorithm. If we cannot obtain mini-batch samples, then we can
employ strategies like moving average across iterations.[10][11]
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2.2 Control Variabtes in MCMC:

The general aim of MCMC is to estimate expectations of functions g(θ), with respect to the posterior
distribution π. Given MCMC samples {θ(i)}Mi=1 from π, we can estimate E

θ∼π
[g(θ)] with an unbiased

estimator (µ̂g):

E
θ∼π

[g(θ)] ≈ 1

M

M∑
i=1

g(θ(i)) = µ̂g

As before, we can then introduce a function h(θ) s.t. E
θ∼

[h(θ)] = 0 as:

g̃(θ) = g(θ) + h(θ)

=⇒ E
θ∼π

[g̃(θ)] = E
θ∼π

[g(θ) + h(θ)]

= E
θ∼π

[g(θ)] + E
θ∼π

[h(θ)]

= E
θ∼π

[g(θ)]

Therefore if h(·) is chosen so that it is negatively correlated with g(θ), then the variance of g̃(θ) will
be reduced considerably.

Note: SGMCMC methods produce unbiased estimates of the log-posterior gradient, and so it follows
that these gradient estimates can be applied as ZV control variates.

Mira et al. (2013) [12] proposed h(θ) to be

h(θ) = ∇Q(θ) +∇Q(θ) · z

where Q(θ) is a polynomial of θ, z = f(θ)/2 and ∇ refers to the Laplace operator ∂2

∂θ21
, . . . , ∂

2

∂θ2d
.

Therefore, to get the best variance reduction, we have to optimize over the coefficients of the Q(.). In
practice, first or second degree polynomials Q(θ) often provide good variance reduction (Mira et al.,
2013). In our experiments, we employ first degree polynomials, so Q(θ) = aT θ.

Since SGLD also calculates an unbiased estimate of ∇f(θ), we replace h(θ) with the unbiased
estimate:

h̃(θ) = ∆Q(θ) +∇Q(θ) · ẑ

where ẑ = ∇f̂(θ)/2. Note that ĥ(θ) is a valid control variate [13]. Using this and Q(θ) to be a linear
polynomial, we have our SGLD-ZV estimate as:

g̃(θ) = g(θ) + aT ẑ

where, the optimal value of a is given by:

â = Var−1(ẑ)Cov(ẑ, g(θ))

.

Since SGLD already calculates all the necessary terms, the post-processing step can simply be applied
once when the SGLD algorithm has finished, provided the full output plus gradient estimates are
stored. Note that the efficiency of ZV control variates in reducing the variance of our MCMC sample
is directly affected by using an estimate of the gradient rather than the truth.

Assumption. Var[ψ(θ)] < ∞ and Var[ ˆψ(θ)] < ∞. E
θ|x

[
‖∇fi(θ)‖2

]
is bounded by some constant

σ ∀i ∈ {0, . . . , N} ∈ RD.
Theorem. Under the above assumption, define the optimal variance reduction for ZV control variates
using the full gradient estimate to be R, and the optimal variance reduction using SGLD gradient
estimates to be R̂. Then we have that:

R̂ ≥ R

1 + [σ(N + 1)]−1 E
θ|x

[
E
S

[
‖ξ(θ)‖2

]]
3



An important consequence of the above thoerem is that if we use the standard SGLD gradient estimate,
then the denominator of right hand side is O(n/N), so our variance reduction diminishes as N gets
large. However, if we use the SGLD-CV estimate instead then under standard asymptotics, the
denominator of is O(n), so the variance reduction does not diminish with increasing dataset size.
Therefore for best results, especially for large N, we use the ZV post-processing step after running
the SGLD-CV algorithm.

Note: There are some storage constraints for SGLD-ZV. This algorithm requires storing the full
MCMC chain, as well as the gradient estimates at each iteration. So the storage cost is twice the
storage cost of a standard SGMCMC run. However, in some high dimensional cases, the required
SGMCMC test statistic is estimated on the fly using the most recent output of the chain and thus
reducing the storage costs.

Note: Wile the original paper employed SGLD, in our experiments we will be using the SGD
algorithm as the above properties hold for SGD as well.

3 Experiments

3.1 SG with Variance Reduction in Logistic Regression

Given a set of training examples {xn, yn}Nn=1, where yn ∈ {1,−1} indicates class labels, the
likelihood of yn is:

p(yn|xn,w) = σ(ynw
Txn)

where σ(z) = 1/(1+exp(z)) is the logistic function [14]. The averaged log likelihood of the training
data is then given by:

l(w) =
1

N

N∑
n=1

[
ynw

Txn − log(1 + exp(ynw
Txn))

]
An SG algorithm employs the following noisy gradient:

gn(w) = ynwσ(−ynwTxn)

We construct our control variate hn(w) for this logistic regression case as follows. We start with the
first-order Taylor expansion around z for the sigmoid function:

σ(z) ≈ σ(ẑ)(1 + σ(−ẑ)(z − ẑ))

Using this approximation for σ(−ynwTxn) in the previous equation, we can obtain our control
variate. Note that for logistic regression, since data samples within each class are more likely
to be similar, we can consider the two classes separately. Consider the positive data samples
{x(1)

n , yn = 1}N(1)

n=1 first. Let z(1) = −wTx
(1)
n , and define control variate h(1)n (w) for yn = 1 as:

h(1)n (w) := x(1)
n σ(ẑ(1))(1 + σ(−ẑ(1))(z(1) − ẑ(1)))

= x(1)
n σ(ẑ(1))(1 + σ(−ẑ(1))(−wTx(1)

n − ẑ(1)))

Its expectation given yn = 1 can be computed in closed-form as:

E
n

[
h(1)n (w)|yn = 1

]
= σ(ẑ(1))

(
x̄(1)

(
1− σ(−ẑ(1)) ˆz(1)

)
− σ(−ẑ(1))

(
Var(1)[x(1)

n ] + x̄(1)(x̄(1))T
)
w

)
where x̄(1) and Var(1)[xn] are the mean and variance of the input features for the positive examples.

For our experiments, we choose ẑ = wT x̄(1), which is the center of the positive examples. We can
similarly derive the control variate h(−1)n (w) for negative examples:

h(−1)n (w) := −x(−1)
n σ(ẑ(−1))(1 + σ(−ẑ(−1))(wTx(−1)

n − ẑ(−1)))

E
n

[
h(−1)n (w)|yn = −1

]
= −σ(ẑ(−1))

(
x̄(−1)(1− σ(−ẑ(−1))ẑ(−1)

)
+ σ(−ẑ(−1))

(
Var(−1)[x(−1)

n ] + x̄(−1)(x̄(−1))T
)
w

)
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where the superscript (-1) denotes negative samples (i.e. yn = −1), ẑ(−1) = wT x̄(−1), x̄(−1) and
Var(−1)[x(−1)

n ] are the mean and variance of the input features for the negative examples.

Given the random sample regardless its label, the expectation of the control variate is computed as:

E
n

[hn(w)] =
N (1)

N
E
n

[
h(1)n (w)|yn = 1

]
+
N (−1)

N
E
n

[
h(−1)n (w)|yn = −1

]
where N (1) and N (−1) are the number of positive and negative examples and N(1)

N is the probability
of choosing a positive example from the training set (similarly for the negative samples). With Taylor
approximation, we would expect our control variate is highly correlated with the noisy gradient.

Note that the expressions obtained above are for the completely stochastic regime. The analogous
expressions for the batch case can be similarly obtained as :

gB(w) =
1

B

B∑
b=1

ybwσ(−ybwTxb)

hB(w) :=
1

B

B∑
b=1

ybxbσ(ẑB)(1 + σ(ẑB)(−ybwTxb − ẑB))

E
b

[hb(w)] =
B(1)

B
E
b

[
h
(1)
b (w)|yb = 1

]
+
B(−1)

B
E
b

[
h
(−1)
b (w)|yb = −1

]
where

E
b

[
h
(1)
b (w)|yb = 1

]
= σ(ẑ

(1)
B )

(
x̄
(1)
B

(
1− σ(−ẑ(1)B )ẑ

(1)
B

)
− σ(−ẑ(1)B )

(
Var(1)[x(1)

b ] + x̄
(1)
B (x̄

(1)
B )T

)
w

)
E
b

[
h
(−1)
b (w)|yb = −1

]
= −σ(ẑ

(−1)
B )

(
x̄
(−1)
B

(
1− σ(−ẑ(−1)B )ẑ

(−1)
B

)
+ σ(−ẑ(−1)B )

(
Var(−1)[x(−1)

b ] + x̄
(−1)
B (x̄

(−1)
B )T

)
w

)
ẑB =

B(1)ẑ
(1)
B +B(−1)ẑ

(−1)
B

B

ẑ
(1)
B = wT x̄

(1)
B

ẑ
(−1)
B = wT x̄

(−1)
B

x̄
(1)
B =

1

B

B∑
b=1

x
(1)
b

x̄
(−1)
B =

1

B

B∑
b=1

x
(−1)
b

where ’b’ is an iterator over the current batch {xb, yb}Bb=1, B is the batch size, B(1) and B(−1) are
the number of positive and negative examples in the current batch, Var(1)[x(1)

b ] and Var(−1)[x(−1)
b ]

variances of the input features for the positive and negative examples respectively in the current batch.

We evaluate our algorithm on stochastic gradient (SG) for logistic regression. For the standard
SG algorithm, we also evaluated the version with averaged output (ASG), although we did not
find it outperforms the standard SG algorithm much. We generated a random dataset (N = 10,000
and p = 5) to test our algorithm. We experimented with constant learning rates and explored
ρt ∈ {0.1, 0.01, 0.001}. In our experiments, we did not notice any significant improvement in the
quality of samples.

Results: The best result of variance reduction is obtained when ρt = 0.1 while the best case for the
standard SG algorithm occurs when ρt = 0.001. In our experiments, we did not find any significant
advantage of using these control variates. In fact, for our small datasets, the convergence of the
VarRed algorithm was slower. Also, the original algorithm is extremely slow due to the calculation
of generalised inverses in each step of the algorithm and this also leads to numerical instability. We
substituted this with the expression in equation 1 to circumvent these issues.
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Figure 1: Log likelihood comparison of the Standard and Variance Reduction algorithm

3.2 ZV-postprocessing in SG for Logistic Regression

Consider the logistic regression model as described in section 3.1. We employed a sim-
ple Stochastic Gradient Ascent algorithm to compute the regression coefficients β for this
model and save all the iterates along with their mini-batch gradients. Following the discus-
sion in section 2.2, we have the following algorithm for computing new estimates β̂ from β.

Algorithm 1: Post-processing ZV

Input :The β estimates along with their mini-batch gradients,
{
θk,∇f̂(θk)

}K
k=1

1 Set zk = 1
2∇f̂(θk);

2 Estimate Vz = Var [z] and Cz = Cov(θ, z);
3 âj = [Vz]

−1
Cz;

4 for k = 1 to K do
5 θ̂k = θk + âT z;
6 end

We evaluated our algorithm on stochastic gradient descent (SGD) for logistic regression. We generated
a random dataset (N = 1e6, p = 30) to test our algorithm. We pursued the version with averaged output
(ASG) but the postprocessing did not perform well on those outputs and in fact, was considerably
worse with an apparent bias in the final estimate. Therefore, we only tested the algorithm on standard
SG where the results were promising.

Results: The results were overwhelmingly good, a sharp reduction in variance was observed which
also lead to a better estimation of the mean β. The variability of the postprocessed estimates were
about 43 times better and these estimates were also closer to the true values. We show the first the
comparison for the first few coordinates in figure 2 and table 1.

True Value Original Esti-
mate

Postprocessed
Estimate

SD Original
Estimates
(σo)

SD Post-
processed
Estimates
(σp)

Ratio
(σo

σp
)

0.087199 0.10916 0.087146 0.0713 0.00121 58.919
0.455167 0.46037 0.454854 0.0744 0.00101 73.755
-0.922060 -0.95603 -0.920953 0.0637 0.00129 49.538

Table 1: Comparison between the estimates with and without post-processing
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Figure 2: Comparison of standard SG estimates vs ZV processed estimates

3.3 ZV-postprocessing in MALA

We then tried to port the idea of ZV postprocessing to the MALA algorithm. We again considered the
logistic regression regime as before and tried to estimate the mean β.

We generated a random dataset (N = 100, p = 5) to test our algorithm. The results in this case were
not as promising as the SGD-ZV. There was little to no improvement in the quality of samples and
there was a slight incrase in the variance of the samples on average. (Fig. 3)

Remark. Note that we had to choose a considerably smaller dataset as MALA is quite slow in
comparison to stochastic gradient algorithms.

4 Analysis

4.1 Experiment 1: SGD vs SGD-CV

The results of our experiments were contradictory to the claims of the original paper. While the
authors claimed that that their method "consistently" performed better than the standard stochastic
variational inference, we found that the introducing covariates led to a faster convergence rate to the
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Figure 3: Comparison of standard MALA estimates vs ZV processed estimates

maxima but the weight vector jumped out of the maxima and stabilised in a local mode as indicated
in the figure 1 as compared against the standard Stochastic Gradient Method. We found this to be
the case even when running on batch size equal to the entire dataset. One possible explanation for
the same can be that the original paper had experimented on a very large "real" dataset while our
experiments were run on synthesised dataset. This can be corrected by fine tuning and employing an
adaptive learning rate as a function of the log likelihood or methods like early stopping (e.g., restoring
the current value if the next few iterations lead to continuous decrements in log likelihood). Since
the authors do not mention any such additional information about their implementation, we cannot
directly claim that SGD-CV is better than CV on the original experiment settings.

Interestingly, we did observe that introducing CV enabled us to use a larger learning rate as compared
to the standard algorithm, without sacrificing much performance.

4.2 Experiment 2: SGD vs SGD-ZV Post Processing

The Zero Variates post processing for the SG works as intended. We observed massive reductions
in variance in our experiments. However, the postprocessing does not work with all kinds of SG
algorithms. We tried to run the postprocess on the averaged output version (ASG) and there were little
to no improvements in the quality of samples and in fact, it introduced some bias into the samples.
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4.3 Experiment 3: MALA vs MALA-ZV Post Processing

We tried to implement the idea of ZV-postprocessing to other MCMC algorithms, in particular,
MALA. We chose MALA because it requires gradients and hence, those could be directly used for
our purposes. However, the postprocessed outputs did not show much promise. They did not seem to
introduce any bias to the samples but the variability of the post-processed samples were higher. We
suspect that this is due to the use of unbiased estimates of the gradient used in the algorithm or due to
the fact that a lot of samples used in calculating the mean of β are wasteful and thus, we could not
converge close enough to the true mean in 1,00,000 samples we generated.

5 Conclusion

In this report, we have provided empirical evidence for the variance reduction of ZV post-processing
control variates. As we need not change the stochastic gradient algorithms already in place to
implement this algorithm, this method can be pushed into production without bearing any significant
costs, with a promise of superior results. We also saw that this method cannot be used in a MALA
setting as it is, but exploring certain variations of this method, to work in these settings, can be a
possible line of research.

Further, we saw that SG-CV algorithm does not consistently perform well under all circumstances
and some research has to be done into what kind of conditions are necessary to affirm its superiority
over the standard SG algorithm keeping in mind that it is already quite slow in comparison to the
standard algorithm.
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