
Comparison of Modern Variants of Stochastic
Gradient Descent (Application Mode)

Shivam Kumar (170668) Prateek Varshney (170494)

Abstract—Momentum based stochastic gradient methods are
widely used for training supervised learning models, and are
considered to be an improvement over gradient descent only
algorithms. Though they have guaranteed improvement over
gradient descent when gradients are exact, there is no theoretical
guarantee for the same in erstwhile cases. In this paper, we
mainly focus on reproducing and extending the results of “On
the Insufficiency of Existing Momentum Schemes for Stochastic
Optimization” published in ICLR conference 2018. We first es-
tablish experimentally that there exist simple stochastic problem
instances where momentum based methods do not outperform
Stochastic Gradient Descent (SGD). We then establish that the
Accelerated Stochastic Gradient Descent (ASGD) can converge
more quickly than Heavy Ball (HB), Nesterov’s Accelerated
Gradient Descent (NAG) and SGD, irrespective of Batch Sizes.

Index Terms—Stochastic Gradient Descent (SGD), Heavy Ball
(HB), Nesterov’s Accelerated Gradient Descent (NAG), Acceler-
ated Stochastic Gradient Descent (ASGD), Fast Gradient Meth-
ods, Exact Gradients, Minibatch, Deep Neural Networks

I. INTRODUCTION

Even though First Order Optimization, gradient descent
[1] being the simplest such method, are the defacto methods
for large scale optimization problems; it has been well
established that gradient descent is suboptimal [2] for the
class of smooth convex functions along with some simple
non-smooth problems. However, there are momentum-based
methods such as The heavy ball method [3] and Nesterov’s
accelerated gradient descent [4] achieve optimal convergence
guarantee. However, momentum-based methods employ exact
gradients (computed on the full training dataset) and have not
been proven to provide improvement over Stochastic Gradient
Descent (SGD) [5] in Stochastic first-order oracle (SFO) [6]
model, where we access stochastic gradients computed on
a small sized mini batches and in the extreme case a batch
size of 1; yet there continues to be widespread adoption of
momentum methods for training deep neural nets, due to
their observable practical gains.

In this paper, we give empirical evidence that in the SFO
model, both HB and NAG only partially improve upon the per-
formance of vanilla SGD, while their performance is similar to
SGD in rest of the practices. The key idea of Kidambi et al.
[7] is to prove and demonstrate empirically that there exist
problem instances where it is informationally-theoretically
possible to improve upon SGD’s performance. However, HB
and NAG fail to achieve it even when their hyperparameters
are optimal. While ASGD is able to achieve better rates of
convergence in the same class of problems. This also indicates

that the performance gain of momentum-based methods over
SGD in practise is due to mini-batching and not the algorithms
themselves. In this paper, we aim to reproduce the results given
in Section 5 of the original paper [8]. Moreover, we extend
the scope by comparing the performance of each algorithms
against Adam [9] (and not Semi-Stochastic Gradient Descent
which we had planned as an optional). The authors had not
provided any source besides the ASGD Algorithm . For our
simulations, we use the PyTorch ‘optim’ [10] built-in package
for SGD, HB, NAG and Adam and the code given on the
GitHub repository [11] for the original paper for ASGD.

II. ALGORITHM

Algorithm 1: Accelerated SGD [8]
Input: Initial ω0 , short step δ, long step

hyperparameter κ ≥ 1, statistical advantage
hyperparameter ξ ≤

√
κ

1 ω̄0 ← ω0; t← 0 // Set running average to ω0

2 α← 1− 0.72·ξ
κ // Set momentum value

3 while ωt not converged do
4 ω̄t+1 ← α · ω̄t + (1− α) ·

(
ωt − κ·δ

0.7 · ∇̂ft (ωt)
)

// Update the running average as a weighted

average of previous running average and a

long step gradient

5 ωt+1 ←
0.7

0.7+(1−α) ·
(
ωt − δ · ∇̂ft (ωt)

)
+ 1−α

0.7+(1−α) · ω̄t+1

// Update the iterate as weighted average

of current running average and short step

gradient

6 t← t+ 1

Output: ωt // Return the last iterate

Algorithm 2: HB: Heavy ball with a SFO
Input: Initial ω0, stepsize δ, momentum α

1 v0 ← ω0; t← 0 // Set v0 to ω0

2 while ωt not converged do
3 vt+1 ← α ∗ vt + ∇̂ft (ωt)
4 ωt+1 ← ωt − δ · vt+1

5 t← t+ 1

Output: ωt // Return the last iterate



Algorithm 3: NAG: Nesterov’s AGD with a SFO
Input: Initial ω0 , stepsize δ, momentum α

1 v0 ← ω0; t← 0 // Set v0 to ω0

2 while ωt not converged do
3 vt+1 ← α · vt + ∇̂ft(ωt − δ ∗ α ∗ vt)
4 ωt+1 ← ωt − δ ∗ vt+1

5 t← t+ 1

Output: ωt // Return the last iterate

III. EXPERIMENTAL SETUP

A. Linear Regression

In this experiment, we compared the performance of the
four optimization methods (i.e. SGD, HB, NAG, and ASGD)
for two different classes of 2 Dimensional distributions, i.e.,
Discrete distribution and Gaussian distribution, generated as:

• Discrete:

a =

{
e1 with probability 0.5
2
κe2 with probability 0.5

• Gaussian: aεR2 is distributed as a Gaussian random
vector with covariance matrix

[
1 0
0 1/κ

]
.

where κ is the condition number and ei is the ith standard
basis vector. Therefore, our dataset comprises of (b, a) pairs
where b =< w∗, a > and w is a fixed randomly generated
matrix s.t. wεR2. For each distribution, we vary the condition
number κ as {24, 25, 26, . . . , 212} and for each κ we run a
total of t = 5κ iterations. This constitutes one simulation. We
run each simulation 10 times and take the mean as our final
result. An algorithm is said to converge when after half of the
total iterations, i.e. 2.5κ, no error exceeds the initial/starting
error. To choose the optimal hyperparameters for each of the
algorithms, we perform a grid search over a 10 × 10 grid
in [0,1]×[0,1] and choose the hyperparameters that yield the
minimum error for a subset of 100 trials that converged. An
algorithm’s convergence performance is defined as:

rate =
log(f(w0))− log(f(wt))

t

B. Deep Autoencoders

The experimental setup for this section as per the original
paper is to train a deep auto-encoder model on MNIST dataset
using the different optimization methods. This problem is
used as a standard benchmark for the evaluation of various
optimization algorithms. The paper suggests an architecture
of 784 − 1000 − 500 − 250 − 30 − 250 − 500 − 1000 − 784
nodes [12]. Since the dimension of MNIST images are 28×28
so the first and last layers of the architecture representing the
input and output each consists of 784 nodes. Also the layer
with 30 nodes follows linear activation and Mean Square Error
loss is used whereas sigmoid activations are used for all the
remaining output or hidden nodes. The architecture is trained

with mini batch sizes of 1 and 8 which run for 30 and 50
epochs respectively. However, we found that this architecture
required a high computational resource for training in the
case of Batch size = 1, which we were lacking. So we
decided to removal the layers with 1000 nodes from the
earlier architecture. The architecture of the now modified
auto encoder model used to train on MNIST dataset was
784−500−250−30−250−500−784. Also the size of dataset
used is reduced to one-sixth of the original MNIST dataset
by means of random sampling. A grid search is done over
the momentum, learning rate and long step hyperparameter
for each of HB, NAG, SGD, Adam and ASGD whereby best
hyperparameters is chosen based on achieving the smallest
training error [13].

C. Deep Residual Networks

In this experiment, we compared the performance of our
optimization algorithms by training deep residual networks
[14] for classifying CIFAR-10 dataset images. The particular
Resnet architecture which we experimented on had 44 layers
(henceforth called PreResnet-44) [15], source code for which
is available on preresnet(2017). Unlike our previous experi-
ments, here we employed a dynamically changing hyperpa-
rameters, which we tuned at training time with the number
of passes and based on changes in specific metrics (such as
validation loss or accuracy) which are evaluated after every
few (fixed number of) epochs. To verify the effect of mini
batching in the performance of NAG, HB and Adam as
compared to SGD and ASGD, we perform the training of the
two different instances of the model differing with respect to
two different batch sizes: 120 and 8 with number of epochs
as 120 and 20 respectively. We employed the loss function as
Cross Entropy and experimented with two different learning
rates: scheduled and decayed.

IV. SIMULATIONS ANALYSIS AND KEY INSIGHTS

A. Linear Regression

Following are our key insights obtained from simulations:
1) In the original paper, the authors had provided the opti-

mal hyperparameter settings for both SGD and ASGD,
and had recommended to perform Grid Search only for
finding the optimal learning rate and momentum values
for Heavy Ball and NAG. However in our experience,
we found to the contrary that the given learning rates
for both SGD and ASGD failed to meet the convergence
criteria as defined by the authors.

2) Given the lack of optimal learning rates for SGD and
ASGD, we performed Grid Search to obtain the optimal
hyperparameter settings for them also, along with the
previously decided Grid Search for Heavy Ball and
NAG. Though we were able to obtain hyperparameters
which minimized the error value for each algorithm
using Grid Search; this led to divergence in the conver-
gence performance metric. Note that at the end of each
iteration t, the loss value f(wt) decreases, and optimal
hyperparameters obtained from grid search often led to



(a) 1/rate vs κ as obtained

(b) 1/rate vs κ on using a best fit line

Fig. 1: 1/rate vs κ for Gaussian Distribution

Fig. 2: 1/rate vs κ for Discrete Distribution as obtained

the loss value becoming zero. As a consequence, the
value of convergence performance diverged.

f(wt)→ 0 =⇒ log(f(wt))→ −∞ =⇒ rate→∞

This leads to breaks in the plot of 1/rate vs κ
3) To mitigate this; while performing grid search we only

picked those hyperparameters which met the conver-
gence criteria and did not lead to a zero error value
f(wt). This is also evident in our code.

4) In practise, Grid Search did not yield the optimum
set of hyperparameters exactly. This is because each
hyperparameter can have a wide range of values in [0,
1] for 100 trials, making it computationally expensive
to perform a fine search over the range of values.

5) Since we only had 9 (κ, rate) points, one for each value
of κ, we obtained the values of slopes by fitting the

points along a straight line and adjusting the intercept.
The intercepts were inaccurate to begin with since we
had not picked the optimal hyperparameter values due
to the aforementioned reasons.

TABLE I: Best Fit Line Slopes

SGD HB NAG ASGD
Gaussian 0.95978 0.93446 0.95946 0.51848

Figures 1a and 2 illustrate the relation between reciprocal
of convergence performance and condition number κ on a
logarithmic scale, as obtained originally for Gaussian and
Discrete Distributions respectively for the different optimiza-
tion algorithms. Figure 1b illustrates the slope values after
plotting the best fit line for the Gaussian case. The chosen
hyperparameters, their convergence rates and slopes were
documented as seen in Table I. Two reference lines were
also plotted (slope = 1 for κ and slope =

√
1/κ for κ0.5 to

contrast the performance of each algorithm. If a plotted line is
closer to κ, then the relation between log κ and log(1/rate)
is likely to be linear; else if a plotted line is closer to the
line κ0.5 then the relation between log κ and log(1/rate) is
likely to be square root (i.e.

√
κ). Clearly, ASGD is closer to

the κ0.5 line while the other algorithms are closer to the κ.
Therefore, ASGD can provide significant improvement over
other algorithms while Heavy Ball and NAG perform similar
to SGD, and are therefore not the optimal choice in most cases.
Our experiments provide an empirical basis to the conclusions
made in the original paper and are consistent with contribution
(1) and (2) of the same.

Note that we obtained surprising results for the Discrete
Distribution case as opposed to those mentioned in the paper.
We believe this can be explained as follows:

1) The value of w∗ is fixed beforehand, and by definition
a can take only one of two value (say a1 and a2)
depending on the Binomial Distribution Sampling. This
implies that b can only take one of two values since
b =< w∗, a > (say b1 and b2 respectively). Hence
our entire dataset is populated with only two types data
points (a1, b1) and (a2, b2).

2) Therefore, the aim of our Linear Neural Network is to
essentially associate label b1 with a1 and b2 with a2,
i.e., there is no diversity either in the input values nor
in the output values. Note that this was not the case in
Gaussian Distribution where aε Gaussian Distribution
=⇒ b =< w∗, a > ε Gaussian Distribution also.

3) Any decent optimization method should attain this
within a constant number of iterations, since the only
other point of consideration will be the actual skewdness
of the data set (a function of the random sampling).

4) As evident from the plot for Discrete Distribution, this is
seemed to be achieved at Condition Number = 102 mark
(even though the total iterations for each κ are defined
as 5 ∗ κ), after which the the loss function converges
approximately, and hence rate→ constant irrespective



of kappa after 102 mark, resulting in line approximately
parallel to the X-axis.

5) However, even then, it is clearly evident that ASGD
achieves this convergence much faster than the other
algorithms, irrespective of the value of κ.

6) Since a Best Fit Line method assigns an equal weightage
to each point, the best fit line for each algorithm would
have a significant contribution of 0 in its slope. Hence,
approximate slopes are no longer a suitable criteria to
compare their convergence power for the Discrete Case.

B. Deep Autoencoders

Fig. 3: Plot for MSE loss of deep autoencoder trained with
mini batch size of 8. NAG performs better than SGD. The
error decay rate of Adam is largest.

Fig. 4: MSE loss of deep autoencoder trained with batch size
1. The error of ASGD decays faster than other methods (which
have similar decay rates with Adam being the slowest).

TABLE II: MSE Loss Convergence Value

Batch size SGD HB NAG ASGD Adam
8 4.34133 4.35470 4.22998 3.39756 3.05110
1 3.28540 3.20536 3.30243 3.00185 3.67435

Following are our key insights obtained from simulations:
1) Some additional changes were made regarding the origi-

nal experimental setup for Deep Autoencoder along with
those mentioned previously. We performed 30 epochs in
contrast to original setup for training of mini batches of
size 8 since the MSE loss was found to converge till the
number of runs reached to 30 (Fig 3).

2) For tuning the learning rate and momentum hyperparam-
eters (whichever is applicable) we performed grid search

on the given list of hyperparameters in the appendix
of the original paper but found that MSE loss did not
converge within that subset. This inconsistency arose
due to the difference in the architecture used by us
and the original paper. The smaller size of dataset used,
also led to it. So we changed the list of learning rate
hyperparameters set on which grid search worked.

3) We chose a set consisting of smaller learning rates
following the intuition that our model requires smaller
learning rates to learn due to the smaller size of dataset
used by us. We decided to vary the learning rate hy-
perparameter from the original one, by a factor of 100,
after which we were able to achieve convergence.

4) For changing the settings and estimating the range of
the learning rate hyperparameters, we plotted all the
the MSE loss curves for that particular algorithm by
running them for 10 epochs to get an early estimation.
On the basis of the plots attained we changed the range
of the probable hyperparameter set (used for grid search)
depending on whether they converged at a very high
MSE loss (suggesting a smaller learning rate) or the
graph diverged (suggesting learning rate is too high),
until we achieved a set where we could observe a
convergence in the plots.

5) We devised a strategy of tuning the hyperparameters,
in accordance with intuition behind binary search algo-
rithm, where we first obtain the two best hyperparam-
eters from the initial grid search and then run another
grid search for the values lying between the two values
obtained. The optimal hyperparameter value obtained
from this nested search is used for the final settings.

6) The MSE loss where the various gradient methods
converged, is higher than that where those algorithm
converged in the original paper. The reason can be
explained by the fact pertaining to the simplicity of the
model’s architecture along with smaller dataset used.

While contrasting the variants regarding the batch size, the
ASGD outperforms the other three methods on mini-batch size
of 1. For Figure 3, in case of mini-batch size of 8, NAG
and HB performs better than than the SGD algorithm whereas
for batch size of 1 (Fig 4), all the the three performs almost
similarly. The error decay rate of ASGD is comparable to
Adam in case of mini-batch size of 8 (Fig 3), but ASGD
decays the MSE loss at faster rate in case of 1 mini-batch
size (Fig 4). Also, the SGD decays with least rate in all the
cases. Adam decays the MSE error with fastest rate in case of
mini-batch size being 8 whereas this decay rate is least when
mini-batch size is 1.

C. Deep Residual Networks

Following are our key insights obtained from simulations:
1) Since Training PreResnet for 120 epochs was already

computationally expensive, given our lack of sufficient
computational resources, performing grid search to ob-
tain optimal hyperparameter settings for each algorithm



(a) Validation Loss vs Number of Epochs

(b) Test Error vs Number of Epochs

Fig. 5: Plots for fixed hyperparameter schedule-128 batch size

TABLE III: Decayed Hyperparameter schedule metrics

Algorithm Batch/Epoch Final Validation Loss Final Test Error

SGD 128/80 0.40805 ±0.00778 0.09779 ±0.00076
8/20 0.52085 ±0.019727 0.16665 ±0.00710

HB 128/80 0.36592 ±0.00813 0.08501 ±0.00068
8/20 0.39928 ±0.01137 0.12905 ±0.00327

NAG 128/80 0.36007 ±0.00798 0.08652 ±0.0007
8/20 0.42158 ±0.00508 0.13450 ±0.00055

ASGD 128/80 0.3509 ±0.00856 0.08216 ±0.00093
8/20 0.37443 ±0.00656 0.12043 ±0.001420

Adam 128/120 0.34208 ±0.007 0.08162 ±0.00074
8/20 0.49724 ±0.01765 0.15937 ±0.00649

was no longer feasible. This led us to create two different
hyperparameter tuning schemes for training our models:
Fixed/Decayed Hyperparameter Schedule.

2) Figure 5 shows the results of our Fixed Hyperparameter
Schedule Scheme on 128 batch size instance. We store
a learning rate set of {0.27,0.09,0.03,0.01} and momen-
tum set {0.97,0.95,0.9,0.8,0.5} with the initial learning
rate and momentum set to the first elements of the sets
respectively. Then every 4th epoch, if the validation loss
did not reduce by more than 1%, we move onto the
next momentum value, and if the momentum set has
been exhausted (or if momentum is not applicable for
an algorithm like SGD), we shift to the next learning rate
in the set (and reset the momentum to the first element).

3) Note that there are a lot of oscillations in the validation
loss as well as test error in the case of momentum based
methods like HB and NAG, while SGD, ASGD and

(a) Validation Loss vs Number of Epochs

(b) Test Error vs Number of Epochs

Fig. 6: Plots for decayed hyperparameter schedule-8 batch size

Adam (which tune only the learning rate have much
smoother converging plots). We deduced that this was
because HB and NAG exhausted all possible momentum
values before moving onto the next lower learning rate
(see Point 2), i.e. as compared to SGD, ASGD and
Adam, higher learning rates were being employed for
significantly more time in HB and NAG (when varying
momentum values) leading to oversteppings and hence
oscillations. Therefore, we needed to devise a scheme
where we could reduce our hyperparameter values to
finer levels as we come nearer to the convergence mark.
However, it is still quite evident that ASGD outperforms
all other algorithms (except Adam).

4) Using the above insights, we devised a new hyperpa-
rameter tuning scheme based on the concept of decay.
We fixed our initial learning rate and momentum, and
after every fixed number of epochs, if our chosen metric
does not change by more than a certain threshold, we
reduced the learning rate by a constant factor. For batch
size 128, we fixed the initial learning rate to 0.27 and
momentum to 0.05 while we performed a grid search in
the case of batch size 8.

5) Figure 6 shows our results obtained on 8 Batch Size
PreResnet 44 Instance. By performing grid search on
a set of recommended values (refer paper), we set
the learning rate and the momentum value for each
algorithm. Then after every 3 epochs, if the validation
error did not reduce by more than 1%, we reduced the
learning rate by a factor of 5. The minimal learning rate



(a) Validation Loss vs Number of Epochs

(b) Test Error vs Number of Epochs

Fig. 7: Decayed hyperparameter schedule plots-128 batch size

was fixed to 6.25 ∗ 10−5, so that our progress did not
curtail due to too much decay. Clearly, we obtained a
much smoother plot than from our previous scheme.

6) Encouraged by the visible improvements, we employed
the same decayed hyperparameter scheme to the 128
batch size problem instance. We set the learning rate to
0.27 and the momentum value to 0.5 for each algorithm.
Then after every 4 epochs, if the validation error did not
reduce by more than 0.2%, we reduced the learning rate
by a factor of 2 (decay). The minimal learning rate was
fixed to 1 ∗ 10−3. Note that we did not employ Grid
Search here because 1) It was computationally infeasible
given our limited resources, 2) We found that for each
algorithm, by the completion of 120 epochs each value
in the set {0.27, 0.135,..., 0.002109375, 0.001054687,
0.001} was being used as learning rate at some point,
with the optimal learning rates being used for a large
number of epochs; approximately mimicking a grid
search. Figure 7 plots our obtained results for the same.

Table III documents our final results. In case of batch size
128, the final metric value was taken to be the mean of last
40 epochs, while in batch size 8 it was the mean of last 4
epochs. For batch size 8, ASGD attains a lower test error and a
higher convergence rate than all the other algorithms including
Adam. Surprisingly, Adam seems to fare much worse than
all the algorithms except SGD. In case of batch size 128,
ASGD convergences faster as well achieves less error than
all other algorithms, outperformed only by Adam by a small

margin. We believe an extensive grid search will enable ASGD
to perform atleast as well as Adam if not better in case of
larger batch sizes. This provides empirical evidence for the
fact that minibatching stabilises the variance in momentum
based methods, and greatly improves the performance of NAG
and HB as compared to SGD.

V. CONCLUSIONS AND RECOMMENDATIONS

In this report, we have provided empirical evidence for the
fact that Momentum based optimization methods such as HB
and NAG enjoy practical gains over SGD in deep learning
applications majorly due to minibatching. Moreover, these
methods are sub optimal in case of SFO problem instances.
On the other hand, ASGD improves significantly over them
for the same problem instances. We observe this gain on
simple problems such as Linear Regression as well as Deep
Learning problems such as Autoencoders on MNIST and
Resnet on CIFAR10. While ASGD performs similar to Adam
on large mini-batch sizes, ASGD outperforms Adam when
using small mini-batch sizes. Based on our experiments, we
highly recommend the use of ASGD over pre-existing variants
of Stochastic based optimization methods.

REFERENCES

[1] L. A. Cauchy. Méthode générale pour la résolution des systèmes
d’équations simultanees. C. R. Acad. Sci.Paris, 1847. Paris, 1847.

[2] Yurii E. Nesterov. Introductory lectures on convex optimization: A
basic course, volume 87 of Applied Optimization. Kluwer Academic
Publishers, 2004.

[3] Boris T Polyak. Some methods of speeding up the convergence of
iteration methods. USSR Computational Mathematics and Mathematical
Physics, 4(5):1–17, 1964.

[4] Yurii Nesterov. A method of solving a convex programming problem
with convergence rate o (1/k2). In Soviet Mathematics Doklady, volume
27, pp. 372–376, 1983.

[5] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, vol.22, 1951.

[6] Yurii E. Nesterov.Introductory lectures on convex optimization: A basic
course, volume 87 of Applied Optimization Kluwer Academic Publish-
ers, 2004.

[7] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and
Aaron Sidford. Accelerating stochastic gradient descent. arXiv preprint
arXiv:1704.08227, 2017.

[8] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade.
On the insufficiency of existing momentum schemes for Stochastic
Optimization

[9] Diederik P. Kingma, Jimmy Lei Ba ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION

[10] Pytorch https://github.com/pytorch.
[11] AccSGD https://github.com/rahulkidambi/AccSGD
[12] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-

sionality of data with neural networks. science, 313 (5786):504–507,
2006.

[13] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
International conference on machine learning, pp. 1139–1147, 2013. pp.
740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p.
301, 1982].

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, pp. 770–778, 2016b

[15] Preresnet-44 for cifar-10. ResNeXt-DenseNet
[16] Insufficiency momentum schemes for Stochastic Optimization
[17] Report on the Insufficiency of Existing Momentum Schemes for Stochas-

tic Optimization

https://github.com/pytorch
https://github.com/rahulkidambi/AccSGD
https://github.com/D-X-Y/
https://github.com/COMP6248-Reproducability-Challenge/Insufficiency-momentum-schemes-for-Stochastic-Optimization
https://github.com/COMP6248-Reproducability-Challenge/Reproducible-report-of-ON-THE-INSUFFICIENCY-OF-EXISTING-MOMENTUM-SCHEMES-FOR-STOCHASTIC-OPTIMIZATION
https://github.com/COMP6248-Reproducability-Challenge/Reproducible-report-of-ON-THE-INSUFFICIENCY-OF-EXISTING-MOMENTUM-SCHEMES-FOR-STOCHASTIC-OPTIMIZATION

	Introduction
	Algorithm
	Experimental Setup
	Linear Regression
	Deep Autoencoders
	Deep Residual Networks

	Simulations Analysis and Key Insights
	Linear Regression
	Deep Autoencoders
	Deep Residual Networks

	Conclusions and Recommendations
	References

