EE698R: Speaker Diarization and Transfer Learning

1

Shivam Kumar Yash Mittal Prateek Varshney
170668 170818 170494
Abstract

In this paper we describe our model for the speaker diarization problem and explain how one can
leverage Transfer Learning to quickly learn a model at the expense of negligible performance loss
as compared to a fully trained one. Given the input utterances and their speaker identity labels, we
extract embeddings from short audio segments and use these embeddings to segregate the speaker
segments within the input source. Building upon this model, we have focused on transfer learning and
manually adapting over various datasets so as to make our model more generic. We have also focused
on improving the DER along with experimenting with different embedding generation networks.

Introduction

Speaker Diarization refers to partitioning an input audio stream into segments based on the speaker identity, i.e., it tells
us "who spoke when" in a multi-speaker setting. For example, we want to know how many speakers are there and when
did each speaker start and end speaking. Speaker Turn Analysis, Multi-media information retrieval, etc. are just some
of the domains where Speaker Diarization is applied extensively.

Most existing Speaker Diarization Systems consist of
multiple relative independent components, namely:

1.

Speech Segmentation Module: Inputs audio into short
segments which are of uniform size (assumed to have
a single speaker).

Voice Activity Detection Module: Detects the pres-
ence or absence of human speech.

. Audio Embedding Extraction Module: Extracts spe-
cific features such as i-vectors [4][3], MFCCs [2], Mel
Spectrum from the segmented sections.

Clustering Module: Determines the number of speak-
ers and assigns speaker identities to clusters of ex-
tracted audio embeddings.

Re-segmentation Module [5]: Refines the Clustering
output by imposing additional constraints.

In this report, we provide details for our speaker diariza-

ti

on models. We also leverage Transfer Learning on top

of an LSTM-based text-independent speech embedding
model, which is then passed to a parametric clustering
algorithm to obtain a speaker diarization system.

2 Data Description

We are currently using two datasets from different do-
mains for our project:

Segmentation—

Embeddings {
Final Diarization
Result

Audio Input — ‘_"“"_-‘_“_‘ H

I.

e ‘J%
“% S

§ Sliding window & pass through Emheddlng Module
: to generate Emheddlngs

‘i: I O
I]

Clustering / Supemsed Labelling and: then passmg through Re-segmentsnun Mndule

VAD —

)
.

2 (e —

Speaker 3 Speaker 2

Speaker 2

Figure 1: Approach

* AMI dataset: The AMI Meeting Corpus is a multi-modal data set and consists of meeting recordings. Specifically,
we use the subset of meetings recorded in English using three different rooms with acoustic properties. The number
of speakers in each subset varies from 1-4 (labelled A,B,C and D) with the words spoken by each speaker during the

meeting stored as (...,

StartTime, EndTime, Speakerld, ...

) stored in XML files which we use to segment the

input audio wav file. Currently we are using three different meeting subsets of AMI dataset namely ES, IS and TS.

Béuzr 5" Trg‘i‘g];R Tgsgﬂ%R Model Train DER | Test DER Model Train DER | Test DER
d 5 0.1464 0'5575 AMI-CNN 0.32 0.37 TL Variant 1 0.41 0.45
0 '75 0-1825 0.5613 AMI-LSTM 0.287 0.304 TL Variant 2 0.41 0.29
1.00 04617 0.5644 Hindi-BiLSTM 0.114 0.238 TL Variant 3 0.42 0.28
(b) Embedding Architectures (c) Transfer Learning Variation

(a) Resemblyzer + Spectral Clustering
Table 1: DER analysis of various models

e Custom made Hindi-English dataset: This dataset was created through obtaining various Hindi news dis-
cussion. The number of speakers varies from 4-7 (labelled as different alphabets). The input audio were
Mono channel wav file with 16 bit sample width. They were annotated in CSV format with structure
(AudioFileName, StartingTime, Duration, Speaker_ID).

3 Proposed Approach

Wan et. al. developed an LSTM network [] to create speaker embeddings for both text-dependent and text-independent
speaker verification [7]. As a baseline, we use a pre-trained instance of their model (trained on fixed-length segments
extracted from a large corpus) as the Embedding module for our Speaker Diarization system. We then experiment
with a CNN architecture, a LSTM Model (on AMI-Corpus Dataset, henceforth called AMI-CNN and AMI-LSTM),
a BiLSTM Model (on Hindi-English Dataset, henceforth called Hindi-English-BiLSTM) and 3 different variants of
a BiLSTM model (using Transfer Learning, henceforth referred to as BiLSTM-TF) with Triplet Loss Function as an
Embedding module. In our pipeline (Figure 1), the input audio signals are segmented into uniform small chunks using
the ground truth labels (each chunk containing approximately only one speaker), a VAD is used to select only those
segments which contain speech, then raw level features (MFCC and log-Mel Spectrum Features) are extracted from
each frame as the network input for the embedding model (BiLSTM-TF/LSTM/CNN). The embedding model then
produces speaker embeddings for each input sequence. Thus this reduces arbitrary length audio streams into a sequence
of fixed size embeddings. We then apply a suitable clustering algorithm to these embeddings to determine both the total
number of unique speakers in the entire audio input as well as assign each audio chunk to a specific speaker.

3.1 Preprocessing

The audio wav files consists of various speakers with corresponding text annotation file denoting the timestamps of all
the distinct speakers along with their speaker id. It is loaded into the system using Librosa library. We then extract the
respective time stamp by parsing the annotation file, split the wav file into small chunks and concatenate them according
to their speaker id. In this process, we also remove the noise if the consecutive chunks doesn’t belong to annotation file.

For the testing phase, as we do not know which speaker said when (i.e. what parts of the wav file actually contain
utterances), we split the audio into 1 second long chunks and run the denoising + low level feature extraction as before.
We use the following routines for each of the models:

* AMI-CNN Model (self-implemented): we use a self-implemented Mel-log spectrum and MFCC feature extractor
as well as a denoiser to remove the silence parts and speech noise

¢ AMI-LSTM Model (Resemblyzer): we use the log-melspectrum of the wav chunks as the input vectors (features)
to the Embedding module.

¢ 5 LSTM based Models (self-implemented): For the AMI-LSTM and all the 3 variants of BILSTM-TL we use
Librosa’s MFCC and MFCC-Delta feature extractors. For the Hindi-English-BiLSTM model we use both Librosa’s
MFCC and MFCC-Delta feature extractors as well as Pyannote’s Embedding generation function.

These raw features of the split wav chunks are then used as the input for the embedding module to generate the
embeddings for each speech segment, after the corresponding speech segments have been chosen by VAD.

3.2 Voice activity detection (VAD)

For detecting presence or absence of human speech we use Voice activity detection (VAD) technique. In our project we
incorporated VAD by three different methods.

VAD (webrtcvad) wave signal VAD (voice activity detector) wave signal VAD (LSTH Model) wave signsl

Original wave signal
9 e mwo—— CONOTURMRRSON RO WS, a1 20

nnnnn
nnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnn

nnnnn

uuuuuu

0000 -20000
000 035 030 075 100 135 150 135 200 b0 o35 o030 075 1
Time 17

(a) Complete Audio (b) Ground Truth (¢c) WebRTC-VAD (d) Log Mel Spectrum (¢) LSTM based Model

Figure 2: Comparing output of Different implementation of VAD (non-speech segments assigned 0)

* WebRTC-VAD: A GMM based voice activity detector which uses GMM models of speech and non-speech sounds
with input features as log energies of six frequency bands between 80Hz-4000Hz.

* Voice Activity Detector (self implemented): Uses normalised energies (computed using log Mel Spectrum and
MEFCC Features) and a user-input threshold to determine bands of voice activity.

¢ LSTM based Model (self implemented): Trained on input files (similar to Embedding module), except that it
assigns each speech/non-speech segment as label 1/0 respectively and treats VAD as a binary classification problem.

3.3 Embeddings

After removing noise we create the embedding vector using the Embedding Module (Resemblyzer[8]/AMI-CNN/AMI-
LSTM/Hindi-English-BiLSTM/BiLSTM-TF). These embedding vectors are such that they give the similarity between
the two speakers based on the distance or cosine similarity between them.

* Resemblyzer: we obtain a summary vector of 256 values (embedding) which summarises the characteristics of the
voice spoken in the audio chunk.

e AMI-CNN (self coded): We use the model architecture: input (160 x 64) — 2D Convolution (3,3) — Relu
activation — 2D Maxpool (2,2)) x2 — Dense Layer (32) — Relu activation — Dense Layer (16). Therefore, the
output embedding is a 16 floating values long vector.

e AMI-LSTM (self coded): We use three LSTM Layers (768 nodes large) followed by 2 Dense Layers with tanh
activation and Dropout of 0.01. The 256 long output vector is normalised using 12 distance metric.

* Hindi-English-BiLSTM (self coded): We use two BiLSTM Layers (128 nodes large) followed by 2 Time Dis-
tributed Dense Layers (32 nodes large) with tanh activation and Dropout of 0.01.

3.4 Clustering Algorithm

Next, we cluster the embeddings obtained to obtain the speaker Labels. Since we are working on predefined Datasets
with Transfer Learning as the variant, we choose Offline Clustering Methods to assign the speaker labels to the input
embeddings. Note that Offline Clustering Methods usually have more hyperparameter choices ("knobs’) which is
exactly what we need to fine-tune over the given dataset having pre-trained over another dataset (Transfer Learning).
Since the Clustering output decides both the number of speakers and segment-wise labels, the overall Diarization
performance depends critically on the clustering module. We therefore work with a number of Clustering Algorithms:

» Sklearn’s Spectral Clustering Algorithm: It is useful when a measure of the center and spread of the cluster is
not a suitable description of the complete cluster. This method requires the exact number of expected speakers.

¢ K-Means++ Clustering (self coded): Starts with smarter initialization of the centroids and improves the quality of
the clustering as compared to Vanilla K-Means. But also requires the exact number of expected speakers beforehand.

* Google’s Spectral Clustering Algorithm: Performs eigen-decomposition over the Affinity Matrix and uses K-
Means++ on the features in the eigen-vector space. Allows for min/max number of expected cluster as an input.

* Hierarchical Agglomerative Clustering: HDBSCAN is an extension of DBSCAN which converts it into a
hierarchical clustering algorithm. For our model we set min_cluster_size to 4 and tune other parameters manually.

* MeanShift Clustering: It is very much similar to K-means clustering apart from one major fact that it does not
require specifying the number of clusters. Due to this, we choose this algorithm for clustering the embeddings.

The Figure 3 shows the cluster outputs for the AMI-CNN model for each clustering algorithm

(b) Google’s Spectral Clus-

tering (c) HDBSCAN (d) Nearest Neighbors (e) Radial Basis

(a) True Labels

Figure 3: Clustering of embedding vector using different algorithm
3.5 DER Calculation

We then compare it against the given speaker id (ground truth) to get results using Diarization Error Rate. To calculate
the DER we invoke the Pyannote’s metric library.

Figure 4 provides an easy visualisation of the output diarization, referred to as Hypothesis, ("who spoke when") against
the ground truth, referred to as Reference. Diarization Error Rate (DER) results are shown in Table 1.

— o —imp —2mp hypothesis

hypothesis

Wt IR A R W R e i i H
1) o FIEiEH i THIETHED IRIH 10 I WHE T B 1A
e HH | I o f - ! ¢ " o .

000 230 500 730 1000 1230 1500 1730 200 0 EJ % @ C3
Time

oret — yrer 2ret — 3 reference =% —%» s w5 — 57 reference

B T L A R I R e B) e
meoow o [Tl LA T T S A

un H | (]

230 500 730 1000 23 1500 730 200 @ b o
Tme

(a) Train (DER: 0.114) (b) Test (DER: 0.24)
Figure 4: Plots of Hypothesis & Reference for BILSTM model

4 Our Project Variant: Transfer Learning

Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a different but
related problem [6]. The intuition being that a model trained on a large and general enough dataset will effectively
serve as a generic model of the entire particular domain and these pre-learned feature maps will avoid training from
scratch a large model on a large dataset. We integrate Transfer Learning by first pre-training the BiLSTM model on
the Hindi-English Dataset and then fine-tuning over the AMI-Corpus Dataset via the following (self-implemented)
variants:

1. Variant 1: Feature Extraction We pass data sample’s raw features (MFCC) through the Hindi-English-BiLSTM
Model to obtain "refined" features since the representations learned by the pre-trained network will extract "meaning-
ful" features. The "refined dataset" obtained this way is then used to train a new Embedding Module (AMI-LSTM)
from scratch. This is similar to passing the dataset through a sequence of 2 models aligned one after the other.

2. Variant 2: Here we combine the above 2 models into one. The idea being that the BILSTM layers of the pre-trained
network already contain features generically useful for creating embeddings. However the dense layers are specific
to the original dataset. Therefore, here we freeze the weights of the BILSTM layers of the Hindi-English-BiLSTM
Model, remove and replace the TimeDistributed Dense Layers with one LSTM + Simple Dense Layers and retrain
the model using MFCC features of the AMI-Corpus Dataset, thereby enabling only the training of the top layers.

3. Variant 3: This is very much like Variant 2 except that we unfreeze the BILSTM layers as well, i.e., we train the
"pre-trained" model (after replacing the Dense Layers) end to end on the current dataset and finetune it accordingly.

We observe that Variant 2 seems to perform best and freezing the BiILSTM layers enables us to save significantly on the
training time as compared to Variants 1 and 3. Diarization Error Rate (DER) results are shown in Table Ic.

4.1 HyperParameters '""Knob'' Tuning for Domain Adaptation

Our approach has many hyperparameter "knobs" which one can change to finetune and improve the performance of the
Transfer Learning Models Obtained above. For example, during our experiments, we found that the performance of
the spectral clustering in terms of Number of Speakers identified was sensitive to the value of Sigma (o) used in the
Gaussian Blur operation used (Figure 5). Here we show how the output embedding clustering changes on different
values of Sigma. So after training on one dataset we can finetune Sigma manually to better adapt our Model on different
dataset and obtain better results. Other such knobs are include leaf size (number of points in leaf node of the tree) alpha
(distance scaling parameter), cluster selection epsilon(distance threshold), etc. in HDBSCAN, number of Dense Layers
and Dense Layer Nodes, Number segmentation window size, MFCC normalization flag, etc.

(a) o =0.25 (b)o =0.5 (c)o =0.75 (do=1 (e) Ground Truth

Figure 5: Spectral Plots with their respective Gaussian Blur Sigma Values ("Knob" Tuning)

5 Conclusion and Future Work

In this report, we provide the results of our experiments for a Speaker Diarization with a Transfer Learning Flavour. We
present our findings on various VADs, Pre-processing Algorithms, Embedding Modules and Clustering Algorithms.
We also empirically demonstrate the potential of Transfer Learning in improving the computation time for training
an end to end Speaker Diarization System at very negligible accuracy cost, and present cases where it even surpasses
non-Transfer Learning Model performances. Our Speaker Diarization Demo Files on a real recording from a TV and
our Transfer Learning variant demo videos can be viewed at Demo_Partl.mp4 and Demo _Part2.mp4 respectively.

https://drive.google.com/file/d/1COzn6TQkSmAFcyxyrxamStSbYqaxXnIg/view?usp=sharing
https://drive.google.com/file/d/1VPlyNYHE_jPbmORbpPoBou-gfhcMoV-u/view?usp=sharing

References

[1]

(2]

(3]

[4]

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural Computation 9.8 (Nov. 1997),
pp- 1735-1780. 1SSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735. eprint: https://direct .mit.edu/
neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. URL: https://doi.org/10.1162/
neco.1997.9.8.1735.

P. Kenny, D. Reynolds, and F. Castaldo. “Diarization of Telephone Conversations Using Factor Analysis”. In:
IEEE Journal of Selected Topics in Signal Processing 4.6 (2010), pp. 1059-1070. bo1: 10.1109/JSTSP.2010.
2081790.

G. Sell and D. Garcia-Romero. “Speaker diarization with plda i-vector scoring and unsupervised calibration”.
In: 2014 IEEE Spoken Language Technology Workshop (SLT). 2014, pp. 413—417. DOI: 10.1109/SLT.2014.
7078610.

M. Senoussaoui et al. “A Study of the Cosine Distance-Based Mean Shift for Telephone Speech Diarization”. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1 (2014), pp. 217-227. bo1: 10.1109/
TASLP.2013.2285474.

G. Sell and D. Garcia-Romero. “Diarization resegmentation in the factor analysis subspace”. In: 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015, pp. 4794-4798. DOLI:
10.1109/ICASSP.2015.7178881.

Stevo Bozinovski. “Reminder of the First Paper on Transfer Learning in Neural Networks, 1976”. In: Informatica
44 (Sept. 2020). DOT: 10.31449/inf . v4413.2828.

Li Wan et al. Generalized End-to-End Loss for Speaker Verification. 2020. arXiv: 1710.10467 [eess.AS].
Resemble-Ai. https://github.com/resemble-ai/Resemblyzer.

https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/JSTSP.2010.2081790
https://doi.org/10.1109/JSTSP.2010.2081790
https://doi.org/10.1109/SLT.2014.7078610
https://doi.org/10.1109/SLT.2014.7078610
https://doi.org/10.1109/TASLP.2013.2285474
https://doi.org/10.1109/TASLP.2013.2285474
https://doi.org/10.1109/ICASSP.2015.7178881
https://doi.org/10.31449/inf.v44i3.2828
https://arxiv.org/abs/1710.10467

	Introduction
	Data Description
	Proposed Approach
	Preprocessing
	Voice activity detection (VAD)
	Embeddings
	Clustering Algorithm
	DER Calculation

	Our Project Variant: Transfer Learning
	HyperParameters "Knob" Tuning for Domain Adaptation

	Conclusion and Future Work

